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Abstract. It is shown that localized instabilities can be an origin of log-normal and power-law statistical
distributions in fracture, fragmentation and island growth processes. Results of laboratory experiments
and numerical simulations performed by different authors are used to demonstrate the applicability of this
approach.
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1 Introduction

Fragmentation and island growth processes usually ex-
hibit power or log-normal distributions. However, the na-
ture of these distributions can be very different in differ-
ent kinds of fragmentation and growth processes (see, for
instance [1–15] and references therein). Moreover, exper-
iments and numerical simulations show that in the same
fragmentation process both power-law and log-normal
distributions can take place, depending on conditions
(amount of impact energy, for instance). To find a dy-
namical mechanism leading to the broad statistical distri-
butions encountered in these processes seems to be actual
and interesting problem. The authors of a recent paper [4]
suggested to relate the statistical distribution of fragment
sizes of brittle solids to the statistical distribution of the
length of the branches which appear as result of instabil-
ity of main cracks propagation. They based this hypothesis
on an observation. Namely, they observed log-normal dis-
tribution for the lengths of microbranches which appear
in a brittle plastic as a result of a straight crack propa-
gation instability. This attractive hypothesis raises addi-
tional questions. What is the mechanism generating the
log-normal distribution of the branch lengths themselves?
Can this mechanism generate the power-law distribution
as well?

As shown in [4] appearance and growth of the branches
can be considered as a dynamical process closely related to
the localized instability of the main straight crack prop-
agation. A specific feature of this growth process is the
sudden interruption of the growth of individual branches
at some stage. Another growth process exhibiting
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analogous dynamical properties was recently discovered
in a numerical simulation of islands growth in molecular
beam epitaxy [16]. In this case we also have fast (exponen-
tial) growth of island sizes related to localized instability
with interruption of the fast growth at some stage. Us-
ing data obtained in this numerical simulation we shall
show below that in this case we also have a log-normal
distribution of the island sizes. It should be noted that a
log-normal distribution of the islands size is also observed
in numerous experiments for island solid surface roughen-
ing [9–15].

Thus one can see from the experiment [4] and the nu-
merical simulation [16] that dynamical growth processes
related to localized instabilities with interruption on some
stage lead to broad (log-normal) distributions. In the
present paper we suggest a simple explanation of this phe-
nomenon that relates to the appearance of the broad sta-
tistical distributions (the power-law as well) to localized
(dynamical) instabilities.

2 Fracture

In reference [4] results of fracture experiments per-
formed on PMMA (poly-methyl-methacrylate) are re-
ported. These experiments indicate that the transition
from a single-crack to a multicrack state is the result of
a dynamical instability. Namely, when the velocity of the
crack exceeds a critical velocity vc a single-crack state no
longer exists. Instead, a crack sprouts small microscopic
side branches whose dynamics are interrelated with those
of the main crack. These side branches propagate for a
short distance and die, the main crack velocity develops
oscillations, and a nontrivial structure is formed on the
fracture surface. From a dynamical point of view these
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side branches can be considered as metastable states with
some life-times τ .

The simplest equation describing distribution of the
lifetimes of the metastable states (the branches) along the
axis x, corresponding to the main straight crack propaga-
tion line, is a Langevin-type equation

dτ
dx

= f(τ, x) + η(x) (1)

where f(τ, x) is a function on τ and x and η(x) is a white
noise with:

〈η(x)η(x′)〉 = 2γδ(x− x′).

For a homogeneous situation f(τ, x) does not depend
on x. The Fokker-Plank equation corresponding to equa-
tion (1) is

∂P (τ, x)
∂x

= −∂f(τ)P (τ, x)
∂τ

+ γ
∂2P (τ, x)
∂τ2

· (2)

The space-homogeneous (i.e. independent on x) solution
of this equation is

P (τ) = N exp
[

1
γ

∫ τ

0

f(τ ′)dτ ′
]

(3)

where N is a normalization constant.
Expanding f(τ) into a Maclaurin series in a vicinity of

τ = 0

f(τ) = a0 + a1τ + a2τ
2 + ... (4)

one can study the distribution for small enough τ . If a0 <
0 one obtains from (3)

P (τ) ∼ e−|a0|τ/γ (5)

i.e. an exponential distribution with a local maximum at
τ = 0. If a0 > 0 one should take into account the next
term in the expansion (4)

f(τ) ' a0 + a1τ (6)

and one obtains from (3) for a1 < 0

P (τ) ∼ e−(τ−τ)2/σ2
(7)

where σ2
0 = 2γ/|a1| and τ = a0/|a1|. This is a Gaussian

distribution.
Let us now estimate the probability distribution of the

branch lengths. In the linear stage of the instability [17]
one can estimate the time of growth of the velocity fluc-
tuations as

v(t) ' v0 exp(σt) (8)

where v0 is an initial velocity of the branch propagation.
The length of the branch is

l(τ) = l0 +
∫ τ

0

v(t) dt (9)

where τ is lifetime of the corresponding metastable state
and l0 is the initial value of the length. Substituting (8)
into (9) we obtain

l(τ) ' l0 +
v0

σ
(eστ − 1). (10)

Since we know the statistical distribution of τ we can find
the statistical distribution of l(τ) using (10). If we take
the exponential distribution of the life-times given by (5),
then using (10) we obtain

P (l) ∼ (l − lmin)α (11)

where α = 1 + |a0|/γσ, and lmin = l0 − v0/σ. This is a
power-law distribution with some shift (for l � lmin this
is the usual power-law distribution). If we now take the
Gaussian distribution of life-times (7) we obtain a log-
normal distribution of the branch lengths

P (l) ∼ 1
l − lmin

exp

{
− 1
σ2

2

[
ln

l − lmin

lm − lmin

]2
}

(12)

where

lm = l0 +
v0

σ
(eστ − 1)

and σ2 = σ1σ. This is a log-normal distribution with some
minimal value l = lmin. It should be noted that the au-
thors of reference [4] fitted their experimental data by log-
normal distribution just of such type.

3 Fragmentation

The authors of [4] suggest to relate the distribution of
the branch lengths to the distribution of fragment sizes
of crushed or fractured objects (see Introduction). Us-
ing this assumption and the results of the previous sec-
tion, we can now understand why the two types of the
probability distribution: log-normal and power-law, are
usually observed in the numerous experiments and nu-
merical simulations of the fragmentation processes. For
instance, in paper [1] results of an experiment with long,
thin glass rods are presented. At low falling height (about
1 m drop), the fragment-size distribution can be described
by the log-normal law while at falling heights greater than
about 4.5 m, a power-law distribution gives a good fit to
the data. In another paper [5] impact fragmentation of an
ideal brittle crystal is numerically simulated using New-
ton equation of motion and deterministic rule of breakage
(rather than stochastic modeling) with a full consideration
of a viscoelastic dynamics of material. The result of this
simulation also show the two types of fragment distribu-
tions: a power-law distribution at early stage (when the
additional energy introduced by the impact is relatively
high) and a log-normal distribution in the late stage of
the fragmentation process (when most of the additional
impact-energy is already dissipated). Natural (tectonic)
observations also exhibit these two types of statistical dis-
tribution [2].
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Fig. 1. Probability distribution of the fragment mass for frag-
mentation of colliding disks (numerical simulation [6]).

It should be noted that the exponential probability
distribution of the life-times similar to the small life-time
representation (5) can be also obtained for large life-times
in the ergodic case. Indeed, if there exists the ergodic limit

lim
τ→∞

∫ τ
0 f(τ ′)dτ ′

τ
= 〈f〉 (13)

then for large life-times one can use the approximation∫ τ

0

f(τ ′)dτ ′ ' 〈f〉τ (14)

and obtain for this case from (3)

P (τ) ∼ e−|〈f〉|τ/γ (15)

for 〈f〉 < 0. For the ergodic situation the linear stage
of the dynamical approach to the metastable states can
be sufficiently long and the corresponding distribution of
the branch length will be similar to (11) (i.e. a power-
law), only the exponent α should be replaced by α =
1 + |〈f〉|/γσ. In this case one can simultaneously observe
both, a log-normal distribution related to the small sizes
and a power-law distribution related to the large sizes of
the fragments. Indeed, in a recent paper [6] fragmenta-
tion of colliding discs was studied numerically using a cell
model of brittle solids. Figure 1 (taken from [6]) shows the
mass distribution of the fragments obtained for an initial
velocity of the disks v = 50 m/s for different system sizes
(R = 5 cm, 10 cm, 12.5 cm, 15 cm). Since log-log scales
are used in this figure the log-normal distribution has the
shape of a parabola, while the power-law distribution cor-
responds to a straight line. One can see in this figure that
for small fragments we have a log-normal fragment mass
distribution while for comparatively large fragments the
distribution can be fitted by a power-law.

Fig. 2. Interface profiles of development of the instability in-
duced by the presence of a pillar of initial height h0 = 25 at
times t = 0.05, 0.1, 0.15 and 0.17 [16].

4 Islands growth

It is quite common to see the log-normal distribution used
to fit the distribution of islands size in experiments on
solid surface roughening (see some recent papers [9–15]).
Analogous situation takes also place in experiments on
corrosion pits [11]. Recent discovery [16] of a relation be-
tween multiscaling and instabilities of discretized growth
equations (and related atomistic models) to isolated pil-
lars (or grooves) growth allows to relate this experimen-
tally observed log-normality to a generic instability of the
surface growth processes.

The Lai-Das Sarma equation for the height h(r, t) at
the point r of the flat surface at time t

∂h

∂t
= −ν∇4h+ λ∇2(∇h)2 + η(r, t), (16)

with a Gaussian noise η(r, t), is suggested in [19] to de-
scribe the molecular beam epitaxy (here ν and λ are some
constants). A numerical simulation performed in [16] for a
discretized version of this equation shows that there exists
a generic instability in which isolated pillars (or grooves)
on an otherwise flat interface grow in time when their
height (or depth) exceeds a critical value hc. Figure 2
(taken from [16]) shows the development of the instability
induced in the 1D discretized LD equation (for λ = 1)
by the presence of a pillar of initial (dimensionless) height
h0 = 25. In the initial stage, the height is zero everywhere
except at the 50th site where the height is h0. Interface
profiles are shown at dimensionless time t = 0.05, 0.1, 0.15
and 0.17. If we calculate the development in time of the
height of the main and the secondary pillars (grooves) us-
ing this figure we obtain that for t ≤ 0.15 the height h(t)
grows exponentially with time (see Fig. 3)

h(t) = h0eσt. (17)
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Fig. 3. Height (depth) of the pillars (grooves) against t as
shown in Figure 2. Closed circles correspond to main pillar,
open circles correspond to secondary pillars, crosses correspond
to secondary grooves.

This is typical for the linear stage of growth of the real in-
stabilities of nonlinear equations [17]. For t > 0.15 there is
a strong acceleration of the growth and it is expected that
just at this stage introduction of the high order nonlinear
terms in the LD equation should interrupt the anomalous
rapid growth (see [16] and [18] for detail argumentation of
the necessity of such high order nonlinearities in the LD
equations and so-called controlled instabilities). Hence one
can introduce a lifetime, τ , of the “activity” (the exponen-
tial growth) of the pillars. The pillars appear on the flat
surface (or line in 1D case) in a random way and one can
apply the approach developed in Section 2 to obtain the
log-normal (and power-law) distribution of the pillars size.

Let us now show how this log-normal distribution is re-
lated to the multiscaling observed in [16] for the controlled
instabilities.

The generalized roughness exponents, Hq, are intro-
duced through the various moments of the height differ-
ences

cq(r) =
1
N

N∑
i=1

|h(xi)− h(xi + r)|q ∼ rqHq (18)

where N is the number of points over which the average is
taken and the limit r→ 0 is considered. For standard par-
tition r ∼ 1/N . The authors of [20] assumed that, when
evaluating (18), r and N may be related in a way dif-
ferent from r ∼ 1/N . Namely, N ∼ r−D0 (D0 could be
considered here as fractal dimension of the support of the
process). Using this assumption and the definition of the
generalized dimensions Dq [20]

Zq(r) =
N∑
i=1

pqi (r) ∼ r(q−1)Dq (19)

where

pi(r) =
|h(xi)− h(xi + r)|∑N
j=1 |h(xj)− h(xj + r)|

Fig. 4. Generalized roughness exponents Hq against q for
two types of the controlled instabilities (data taken from [16]).
Closed circles correspond to the control using modified deposi-
tion rule and open circles correspond to the control using terms
with high power of gradients of height variable. The straight
lines are drawn to indicate linear dependence on q (log-normal
representation (22)).

a relation between the generalized dimensions and the gen-
eralized roughness exponents

Hq = H1 +
(q − 1)(Dq −D0)

q
(20)

can be obtained.
For the log-normal distribution

Dq = D0 − aq (21)

where a is a constant. Then substituting (21) into (20) we
obtain

Hq = (H1 + a)− aq (22)

i.e. for the log-normal distribution the generalized rough-
ness exponent is a linear function of the order q (cf. non-
island growth [21]). In Figure 4 we show Hq obtained
in numerical simulations performed in [16] for two types
of controlled instabilities for the atomistic models corre-
sponding to the LD equation [22]. In the model of the
first type, the instability is controlled by introducing terms
with high power of gradients of height variable, whereas
the second type consists of atomic models in which insta-
bility is controlled by modifying the deposition rule. One
can see from Figure 4 that in both these cases Hq is ap-
proximately linear function of q, that corresponds to the
log-normal distribution.
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